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The problem and at the same time our 
motivation is the loss of species diversity in the 
ocean, which is often also referred to as ”invisible 
dying”. With our approach, we pursue the goal of 
making this dying visible and thus preventable. 
To make events in the ocean visible, we need 
to identify patterns depending on the ocean 
depth and then recognize deviations from these 
patterns. With the Norwegian institute Lofoten-
Vesterålen, we are analyzing ocean data, to help 
detect anomalies. This should enable a better 
understanding of the ocean ecosystem. This 
should help to identify the consequences of 
human intervention in nature, such as dwindling 
fish stocks.

Abstract. 
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Accurate observation of ecosystems enable 
detailed oceanographic research, allowing 
anomalies to be identified in enormous 
amounts of data with the help of artificial 
intelligence (AI).

The Lofoten-Vesterålen (LoVe) Ocean Observatory is located 
west of Hovden Vesterålen in the northern part of Norway. 
It is located in an ecological, geological, oceanographic and 
economic ”hotspot”. A network of submarine cables and 
seven sensor nodes covers a cross-section from the mainland 
to the deep sea. It includes a land-based station and seven 
sensor platforms, covering a gradient from sea level to a 
depth of 200m. The system continuously provides valuable 
online data on the marine environment in northern Norway, 
and has been active since 2013.

The system is both, a national research infrastructure, basic 
and applied research, as well as a test infrastructure, where 
industry partners can test new underwater sensors and 
technologies. The Lofoten-Vesterålen Ocean Observatory has 
collected over 100 terabytes of sensor data (temperatures, 
currents, echograms) over the years.
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OceAIn was created as a team name to participate in 
Capgemini’s Global Data Science challenge (GDSC) 2021. The 
goal of OceAIn was to develop an AI model that gains new 
insight into seasonal correlating patterns in ecosystems using 
the time series data which was collected by ocean sensors. This 
should help to build better models and understand the climate 
of our planet.

The AI model processes data of the cross section from the 
mainland to the deep sea. They are collected by four different 
sensors that measure (1) directional pulsating sounds in specific 
areas with a scientific echo sounder, (2) a so-called hydrophone, 
i.e. an underwater microphone that records sounds in the 
environment, (3) an Acoustic Doppler (ADCP) that detects the 
speed and direction of ocean currents using the Doppler effect, 
and finally, (4) point sensors that provide real-time physical, 
biological and chemical observations.

The Identification of repeating seasonal patterns and 
anomalies allows scientists to better monitor the marine 
environment. This involves widespread exploration of 
the anomalies and their influencing factors and drawing 
conclusions from the bigger picture, such as differences in 
fish populations, varying current patterns, or the influence of 
climate change.

While large volumes of raw data are difficult to process 
manually and the results are highly error-prone in the process, 
AI models allow filtering of this data for relevant events. In 
addition, AI enables continuous analyzation of incoming data, 
resulting in a stream of data to the researchers.

Architektur des Systems Even though the AI model is the 
core of OceAIn, there are other components that make up 
the platform. Our next goal is to make them work together 
according to the cloud-native architecture concept, which 
will create a future-proof and flexible data pipeline. The 
raw data provided by the institute will be collected in one 

Table 1. Results of the Baseline Models

MODEL F1 SCORE PRECISION RECALL MACRO
AVG F1

always true 1.00 0.30 0.47 0.23

always false 0.00 0.00 0.00 0.41

uniform random 0.54 0.40 0.46 0.58

stratified 0.17 0.21 0.19 0.44

step and cleaned and transformed in the next. These steps 
will take place in Docker containers, with each type of data 
(hydrophone, biomass detection, etc.) having its own container 
in every step. The collaboration of the containers is defined in

Apache Airflow, which works on the ”Configuration As Code” 
principle. Airflow allows the definition of infrastructure using 
DAGs (Directed Acyclic Graph). It is also worth mentioning that 
Docker containers are actually managed by Kubernetes, which 
in turn is defined by Airflow. Finally, the transformed data is 
persisted in the form of CSV files. They are processed by the AI 
to detect anomalies, which are displayed with the data in the 
form of image files through an interactive web interface.

Implementation of the AI model OceAIn includes an AI 
model that detects anomalies in ocean data. The sensor data 
for the AI model are highly variable in the type of information, 
as well as in their duration. In addition, some types of 
anomalies are only detectable if the data points are considered 
interconnected from the beginning.

The initial idea was to focus on individual models that could 
handle different types of data and later combine the separate 
models. Due to the variety of data, this approach showed some 
disadvantages, such as increased complexity in aggregating the 
individual models.
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The idea that ultimately prevailed was to use a deep-learning 
neural network that analyzes all the data in their entirety for 
anomalies. At first, unsupervised models were supposed to 
be used, but this approach turned out not to be feasible.

The use of unsupervised AI models has the advantage that 
the training of those models does not rely on the presence 
of labeled training data (anomaly vs. normal).

However, those models are extremely vulnerable to data 
noise and corruption [1]. The underlying ocean measurement 
data are also subject to these characteristics, which are 
further exacerbated by their whole-scale nature and the high 
data dimensionality that accompanies them.

The contribution of labeled data by the researchers 
has enabled the use of supervised AI models. Basically, 
supervised AI models outperform their unsupervised 
counterparts in anomaly detection, as they are particularly 
capable of detecting application-specific anomalies [2].

To check the performance of the unsupervised models later, 
four baseline models were created first, the results of which 
can be seen in 1. These are a common tool in the evaluation 
of machine learning models and are naive solutions for a 
classification problem.

By comparing the results of a real model with those of the 
baseline models, conclusions about the correctness of the 
real models can be made. Of the baseline models used here, 
one always classifies false, one always classifies true, one 
splits the datasets in half between true and false, and the 
last stratifies the data based on their labels.

During the model development, two types of models 
were created. These are reconstructionbased models 
and predictive models. For the former, three different 
microarchitectures were created. The first uses 

Table 2. Results of all reconstruction models

RECONSTRUCTION

CLEAN DATA FULL DATA
dense lstm conv lstm conv

dense W32
HL400 40
dense W32
HL400 40 v2

dense W8 HL400
40 20 4

lstm W32 HL100
40 20 4
lstm W32 HL100
40 20 4 v2

dense W16
HL100 40 20 4
dense W32
HL100 40 20 4

dense W32
HL2000 1000
100 40 20 4
dense W32
HL400 40
dense W32
HL400 40 v3

lstm W32 HL100
40 20 4
lstm W32 HL100
40 20 4 v2

lstm W32 HL40
lstm W32 HL400
100 10
lstm W32 HL64
32 16
lstm W8 HL100
40 20 4

conv W16
HL1000 100 10
conv W16
HL1000 400 100
4
conv W16
HL100 40 20 4
conv W32
HL100 40 20 4
conv W64
HL100 40 20 4

one-dimensional convolutions in each of the hidden layers, where the amount of filters is determined by a hyperparameter. The 
second architecture uses so-called LSTM layers and the third is a fully connected autoencoder. 

predictive models also fall into three categories. These are 
also LSTM and fully connected hidden layers, as well as an 
architecture that uses convolution and max-pooling. The 
naming of the models follows a fixed pattern. First, it is 
specified which architectural scheme a model corresponds 
with. Then a ”W” and a number is given, which represents the 
window size. ”W32” thus describes a neural network with a 
window size of 32. This is followed by further numbers, which 
indicate the size of the hidden layers. Optionally, there is also 
a version number at the end, which indicates models that 
had delivered promising results in the first instance, which is 
why they are run several times. Since the models described 
above do not in themselves detect anomalies, there is another 

component that is responsible for exactly that. The results of 
these models were sobering. Hardly any of the models could 
exceed an F1 score of 0.5, which means that they were no 
better than the baseline models with random division of the 
values. In fact, there was only one model, ”lstm W32 HL128 
128 128” which could (minimally) exceed this limit. All tested 
models can be seen in the tables 2 and 3, while 4 shows the 
average results of the different types of models.

There are several reasons for the comparatively poor results of 
unsupervised models. The data itself is rather unsuitable for an 
unsupervised model. Gaps, noise, and data corruption greatly 
degrade the results of unsupervised models. 
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Table 3. Results of all prediction models

RECONSTRUCTION

CLEAN DATA FULL DATA
dense lstm conv lstm conv

dense W32
HL256*5 v2

lstm W32 HL128
128 128

conv W32
HL128 128 128
conv W32
HL128 128 128 v2
conv W32 HL32
32 32

lstm W32 HL128
128 128

conv W32 HL32
32 32

Table 4. Average results of all model types

MODEL QUANTILE F1 SCORE PRECISION RECALL MACRO AVG F1
reconstruction dense clean data 0.73 0.43 0.34 0.73 0.41

reconstruction lstm clean dat 0.85 0.41 0.41 0.67 0.4

reconstruction conv full data 0.85 0.46 0.38 0.68 0.5

reconstruction dense full data 0.85 0.28 0.32 0.39 0.46

reconstruction lstm full data 0.85 0.4 0.33 0.62 0.46

forecast conv clean data 0.85 0.47 0.32 0.9 0.35

forecast dense clean data 0.73 0.48 0.32 0.95 0.33

forecast lstm clean data 0.73 0.48 0.32 0.98 0.3

forecast lstm full data 0.73 0.47 0.31 0.94 0.31

forecast conv full data 0.85 0.47 0.32 0.95 0.33
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In addition, the datasets are highly dimensional, with a large 
number of sensors collecting information simultaneously. The 
more complex a dataset is, the harder it is to train AI models 
to produce correct results. Presumably, our models would 
produce far better results if the data was less complex. Another 
issue is the limited computational capacity we have. The 
compression ratio of the models is high because adding more 
layers would have required significantly more computation 
time, which was not feasible. Lastly, it should be mentioned 
that extensive hyperparameter optimization has not taken 
place yet. This could mean that the models themselves are 
actually better than assumed.

For all these reasons, it can be concluded that unsupervised 
models are unsuitable for anomaly detection in ocean data 
as it is generated by LoVe. Thus, OceAIn shall use a model 
that learns in a supervised manner. This model will later 
be continuously retrained based on data generated by the 
researchers during operation.

A snippet of code for the model is shown in listing 1. Here, the 
datasets that deviate significantly from the expected normal 
are detected. This is done by first iterating over all the datasets, 
while all datapoints that are detected as deviations are stored 
in the array anomalouṡ data˙indices.
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use a model that learns in a supervised manner. This model will later be continuously
retrained based on data generated by the researchers during operation.
A snippet of code for the model is shown in listing 1. Here, the datasets that deviate

significantly from the expected normal are detected. This is done by first iterating over
all the datasets, while all datapoints that are detected as deviations are stored in the
array anomalous˙data˙indices.

1 # Detect all the samples which are anomalies.

2 anomalies = test_mae_loss > threshold

3 print("Number of anomaly samples: ", np.sum(anomalies))

4 print("Indices of anomaly samples: ", np.where(anomalies))

5

6 plt.plot(x_test[0])

7 plt.plot(x_test_pred[0], alpha=0.7)

8 plt.show()

9

10 anomalous_data_indices = []

11 for data_idx in range(TIME_STEPS - 1, len(X_test) - TIME_STEPS + 1):

12 if np.all(anomalies[data_idx - TIME_STEPS + 1 : data_idx]):

13 anomalous_data_indices.append(data_idx)

14 anomalous_data_indices

15

Listing 1. Code snippet of the anomaly detection module

Visualization of the vast amounts of data
The visualization of the results generated by the AI models and the associated raw data
is done in the form of a web application, whose structure can be seen in the form of
a class diagram in Figure 1. The Visualizer class depends on the External Framework
ThreeJS, and is responsible for generating the image files from the CSV files. The Vi-
sualizer is also extended with a separate component for each type of sensor data. The
class ”App”, in turn, is responsible for initializing the sensor classes and processing user
input.

On the server side, Python and Docker are used, while various packages are provided
that contain the functionality for data synchronization and the creation of measure-
ment data representations. On the client side, when executing the web documents sent
by the server, control elements are created in the browser, which convert the user’s

Listing 1. Code snippet of the anomaly detection module
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Visualization of the vast amounts of data
The visualization of the results generated by the AI models 
and the associated raw data is done in the form of a web 
application, whose structure can be seen in the form of 
a class diagram in Figure 1. The Visualizer class depends 
on the External Framework ThreeJS, and is responsible 
for generating the image files from the CSV files. The 
Visualizer is also extended with a separate component 
for each type of sensor data. The class ”App”, in turn, 
is responsible for initializing the sensor classes and 
processing user input.

On the server side, Python and Docker are used, 
while various packages are provided that contain the 
functionality for data synchronization and the creation 
of measurement data representations. On the client 
side, when executing the web documents sent by the 
server, control elements are created in the browser, 
which convert the user’s interactions into corresponding 
requests. Javascript and the library Three.js are used for 
this purpose.

The actual visualization of the measurement data 
on the client side is done as following:

There are four canvas elements arranged as shown 
in figure 2. They contain the visualized data of 
different sensors, where each element can be 
moved on the x-axis, and thus in the temporal 
space. Movement on the y-axis, on the other hand, 
you move in a sensor specific space.

At the top left, the data from the EK60 sensors are 
evaluated. These sensors can detect how much 
biomass is present at a certain location. This is 
visible through the color gradient of the generated 
image. The brighter an area is, the more biomass 
was detected at the corresponding location. 
Vertical movement adjusts the depth of the 
captured data.

At the top right, acoustic signals recorded with 
hydrophones are displayed. Here, only a shift on the 
X-axis is possible.

At the bottom left, from top to bottom, flow 
velocity, strength and direction are displayed. 
See also 3. Just like the EK60 sensors, the vertical 
position determines the depth of the acquired data, 
while the brightness of the colors determines the 
speed or intensity of the currents.

Finally, at the bottom right are the point sensors. 
These capture different data, such as water 
composition, salinity, or the presence of certain 
chemicals, and display them as graphs.

ThreeJs

UserinputHandler

Visualizer

EK60

Hydrophon

ADCP

Pointsensors

App

Extends

Owns

Owns

Figure 1. Overview of the main component of the 
client-side application

The visualization of the results 
generated by the AI models and the 
associated raw data is done in the form 
of a web application, whose structure 
can be seen in the form of a class 
diagram in Figure 1.

8OCEAN DATA AND AI FOR SPECIES CONSERVATION I OCTOBER 2022



On the server side, a conversion of the measurement data 
from CSV first into JSON and then into image formats 
(such as PNG, JPG and JEPG) takes place. In this process, 
only the truly important data is visualized. Thus, the 
unimportant part is ignored from the start, which means 
that only a fraction actually needs to be displayed. The 
conversion of the measurement data into image formats 
allows a reduction of the sent data to the client, so that 
large time intervals can be visualized and all measurement 
data information can be displayed.

On the client side, the representations created on the 
server side are retrieved and displayed by the client-
side components. Figure 2 shows the implemented user 
interface, which displays a section of the measurement 
data of the EK60 sensors, hydrophones, ADCP sensors 
and point sensors for a period of three days. Each of the 
four areas can be controlled by a control bar. The X- and 
Y-positions of the mouse pointer in the visualization area 
are interpreted by the client without making any requests 
to the server, so that the X-position leads to the display 
of the time stamp for the measurement data displayed 
below, and the Y-position leads to the display of the 
Y-axis values of the measurement data. For example, 
the EK60 and ADCP display the depth values. The ADCP 
measurement data is also used to calculate the currents, 
which makes it possible to establish correlations between 
water currents and the distribution and movement 
of biomass from the EK60 measurement data. This is 
illustrated in figure 3.
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Figure 2. The GUI for visualizing a section of the measurement data
of all sensors

Figure 3. Visualization of ADCP measurement data in fullscreen mode.
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Figure 2. The GUI for 
visualizing a section of 
the measurement data 
of all sensors

Figure 3. Visualization 
of ADCP measurement 
data in fullscreen 
mode.
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Listing 2 shows the function to˙streamplot, which is responsible for the calculation of the flow data. The variable 
plt represents the external Python library Matplotlib. In this function the ADCP datapoints are supplied as 
parameters. With the help of the Matplotlib function streamplot a flow diagram is generated, which shows the 
calculated ocean currents. The diagram is saved as an image file, from where it is later displayed on the web 
interface.
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Listing 2 shows the function to˙streamplot, which is responsible for the calculation of
the flow data. The variable plt represents the external Python library Matplotlib. In
this function the ADCP datapoints are supplied as parameters. With the help of the
Matplotlib function streamplot a flow diagram is generated, which shows the calculated
ocean currents. The diagram is saved as an image file, from where it is later displayed
on the web interface.

1 def to_streamplot(X, Y, u, v,target_file_path,config):

2 _,ax = get_fig_ax()

3 ax.streamplot(X, Y, u, v,linewidth=config['linewidth'],

4 color=u,density=config['density'],

5 cmap=config['cmap'],

6 arrowstyle=config['arrowstyle'])

7 plt.savefig(target_file_path,

8 format=str(target_file_path.suffix).replace('.',''),

9 bbox_inches='tight',pad_inches=0.0, transparent=True)

10 return target_file_path

11

Listing 2. Code for the calculation of the currents for the visualization

Conclusion
The OceAIn platform allows marine biologists at the LoVe Ocean Observatory to di-
rectly access subject relevant events from the wealth of collected data. This saves a
large amount of manual data analysis, with this saved time instead being used to drive
research.
Outlook

The OceAIn project shows how collaboration between marine biology and IT can help
to protect species and increase the understanding of our environment. However, our
work on this project is far from complete. There are several planned features on our
roadmap. First, the entire structure, from data collection to processed results will be
automated, using containers as described at the beginning of this article. Another goal
is to enable continuous and automated retraining of the AI based on the manually
marked anomalies. The visualization itself is also not yet complete. Here, for example,
there are possibilities for extending the display of the data or the UI features. In
addition, the completed website should soon be active continuously, so that it can be
used by researchers at the LoVe Institute.

Listing 2. Code for the calculation of the currents for the visualization

10OCEAN DATA AND AI FOR SPECIES CONSERVATION I OCTOBER 2022



Conclusion
The OceAIn platform allows marine biologists 
at the LoVe Ocean Observatory to directly 
access subject relevant events from the wealth 
of collected data. This saves a large amount of 
manual data analysis, with this saved time instead 
being used to drive research.
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Outlook
The OceAIn project shows how collaboration between 
marine biology and IT can help to protect species and 
increase the understanding of our environment. However, 
our work on this project is far from complete. There 
are several planned features on our roadmap. First, 
the entire structure, from data collection to processed 
results will be automated, using containers as described 
at the beginning of this article. Another goal is to enable 
continuous and automated retraining of the AI based on 
the manually marked anomalies. The visualization itself 
is also not yet complete. Here, for example, there are 
possibilities for extending the display of the data or the 
UI features. In addition, the completed website should 
soon be active continuously, so that it can be used by 
researchers at the LoVe Institute.
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