
1 | Ag i l e & I T A r c h i te c t u r e

The JIT-JEA way of working

H ow w e d o i t | A Te c h n o V i s i o n i m p l e m e n t a t i o n g u i d e

AGILE & IT
ARCHITECTURE

2 | Ag i l e & I T A r c h i te c t u r e

WELCOME TO THE JIT-JEA WAY OF WORKING

A
gility is a central requirement for many organizations. For organizations looking
for a digital future, the question is no longer whether an agile innovation should
be used, but which innovation, when, and how. Questions we should ask ourselves
include: How to incorporate agility into the 2022 digital development plan and
operating landscape? What steps would accelerate digital transformation?
How best to architect in an agile way?

At its core, the term “agile” refers to an iterative, incremental method of managing design and building
activities with an aim of developing new products in a highly flexible and interactive manner. As noted
in the 2019 Capgemini “Agile at Scale” report, companies are starting to adopt and scale agile ways of
working, changing the way they work.

And this change is also impacting the way we, as (IT) architects work. We are living in a complex and
fast-moving world, ever gathering pace. What was acceptable yesterday, will not be accepted tomorrow.
Our world is shifting, client expectations are changing and so is the market. Now more than ever, our
clients expect their IT function to seamlessly support the business as we see the lines of business and
technology blurring beyond recognition. As a result, we need to change and adopt new ways of working.
We need to respond to change, at an ever increasing frequency.

There is a common misconception in the IT industry that architecture must be created
“top-down;” where architecture-related artifacts are developed over two or three months - in one
go - proving that “architecture” and “agile” are not compatible. This is not true. Working as a team,
following a more agile architecture approach and designing a solution can be done, in one day.
Of course, the level of detail will not be as deep as with a solution that takes months to produce,
but it may be sufficient to take any necessary decisions to move forward.

Working in an agile way can drive change creating business opportunities through technological
innovation. Architects can shape and translate business and IT strategy into realizable and sustainable
technology solutions, while moving end-to-end solution delivery ownership from idea to benefits
delivery. How to do this successfully in an agile fashion is the subject for debate in this paper.

Working with a dedicated team of IT Architects from across the Capgemini Group, we hope to provide a
detailed and comprehensive overview on not only what we in Capgemini mean by “agile IT architecture,”
but also to outline how we architect in an agile way. Our thanks goes out to everyone who has been
involved in creating this paper, our experts leading the agile charge in architecture.

G U N N A R M E N Z E L ,

Master Certified Architect

Manchester, UK

K A I S C H RO E D E R ,

Global Architects Community Lead

München, DE

S T E FA N O ROS S I N I ,

Italy Industrialization Lead

Milan, IT

https://www.capgemini.com/wp-content/uploads/2017/07/the_new_role_of_the_architect_-_central_to_growing_your_business_in_todays_digital_world.pdf

CONTENTS
1 INTRODUCTION 4

1.1 WHAT IS IT ARCHITECTURE? 5

1.2 WHAT IS AGILE? 5

1.3 WHAT IS AGILE ARCHITECTURE AND WHY JIT-JEA? 5

2 ARCHITECTURE IN AGILE 7

3 AGILE IN ARCHITECTURE 10

4 THE JIT-JEA CONCEPT 13

4.1 JUST ENOUGH ARCHITECTURE 14

4.1.1 EMERGING AND INTENTIONAL ARCHITECTURE 14

4.1.2 ARCHITECTURAL RUNWAY 15

4.1.3 MINIMUM VIABLE ARCHITECTURE 16

4.1.4 DATA DRIVEN ARCHITECTURE 16

4.2 JUST ENOUGH DOCUMENTATION 16

4.2.1 DOCUMENTATION AS CODE 17

4.3 JUST ENOUGH GOVERNANCE 17

4.3.1 FASTER ARCHITECTURAL DECISION-MAKING 18

4.3.2 VALIDATING SOLUTIONS AGAINST ARCHITECTURAL COMPLIANCE 18

4.3.3 STRUCTURAL COLLABORATION BETWEEN ARCHITECTS AND DELIVERY TEAMS 19

4.3.4 ARCHITECTURE COMMUNITY OF PRACTICE 19

4.3.5 ARCHITECTURE DECISION RECORD (ADR) 19

4.4 JUST IN TIME 20

4.5 IN ITERATION SIZE CHUNKS 21

4.6 CONCLUDING REMARKS ON JIT-JEA 22

5 BIBLIOGRAPHY 23

6 AUTHORS 24

3 | Ag i l e & I T A r c h i te c t u r e

1
INTRODUCTION
This section provides the context and key
definitions to frame the next chapters of
this document. We do not intend to redefine
concepts, but merely ensure that the scope
of this agile IT architecture point of view is
clear. Throughout this paper we will use the
terms “architecture” and “architect.” To avoid
confusion with other professions, whenever
we use the term, we are referring to Business
and IT (Information Technology) architecture
and Business and IT architects.

Today, we as architects are often faced with
the challenge of developing just enough. Agile
development demands faster turnaround, expecting
quick iterations and delivering just about the right
amount of documentation; not too much and not
too little. But what is actually good enough?
When have we as architects developed enough
material? What do we mean by “just enough?”

JU
ST

 E
N

O
U

G
H

D
O

C
U

M
EN

TA
TI

O
N

IN
 IT

ER
A

TI
O

N
SI

ZE
 C

H
U

N
C

K
S

JIT-JEA
JUST ENOUGH ARCHITECTURE

JU
ST

 E
N

O
U

G
H

G
O

V
ER

N
A

N
C

E

JU
ST

 IN
 T

IM
E

4 | Ag i l e & I T A r c h i te c t u r e

Developing “just enough architecture” is
a common challenge. It is all too easy for the
statement to become an end-goal in itself, rather
than something that is there to help the business
and development process. As a result, it can
become difficult to determine when exactly
to stop designing the architecture.

To assist architects who are working in an agile
context, Capgemini encourages architects to connect
with Agile and DevOps communities all around
the world to share their work and help each other.
This POV paper will explain the proposed Capgemini
method of designing agile architectures known as
JIT-JEA: Just in Time - Just Enough Architecture.

But, before we introduce JIT-JEA,
what is an Agile Architecture?

5 | Ag i l e & I T A r c h i te c t u r e

1.3 What is Agile Architecture
and why JIT-JEA?

Agile architecture is the art of designing and delivering
the “right” solution - meeting the requirements,
expectations and demands of the client - while being
able to respond to change in any uncertain environment.
Responding to change means that we no longer create a
“Big Design Up Front” (BDUF). Instead, the architecture
designed in an agile context:

• provides the vision (intentional architecture) where
the teams fit in with their (development) work.

• gives clear boundaries for the agile teams to make
their own design decisions (emerging architecture).

• evolves with the cadence of iterative and incremental
development along the agile journey (evolving
architecture), and ensures a proper alignment
between the intentional architecture (top-down)
and the architecture emerging form the agile teams
(bottom-up).

• must be fit for purpose; do as much architecture work
as needed to build it just in time!

• breaks up the solution in pieces of work (iteration size
chunks) that can be taken further by different teams.

Ideally, agile architecture should also enable designing
for testability, deployability, and releaseability.

1.1 WHAT IS IT ARCHITECTURE?
Architecture can be defined as:

• The fundamental concepts or properties of a
system in its environment embodied in its elements,
relationships, and in the principles of its design

and evolution.1

• The structure of components, their inter-relationships,
and the principles and guidelines governing their
design and evolution over time.2

IT Architecture is not only about technology,
infrastructure, or software; it is mainly about managing
complexity to reduce risk and costs. In other words, if
there is no complexity an IT architecture is not needed.

IT Architecture is an art form. It is the art of designing
and delivering the right solution, providing:

• structure, where otherwise there would be chaos,

• alignment, where otherwise there would be none,

• certainty, where otherwise would be unpredictability.

1.2 What is Agile?

Agile, according to the Agile Alliance3, is the ability
to create and respond to change both adequately and
in due time. It is a way of dealing with, and ultimately
succeeding in, an uncertain and turbulent environment.
Agile is a mindset that drives certain behaviors, centred
around the four values and twelve principles of the
Agile Manifesto4.

In IT, ”Agile” refers to an iterative and incremental
method of managing design and building activities with
an aim of carrying out and developing new products
in a highly flexible and interactive manner.

“Agility” is our ability to sense and respond to change
both adequately and in due time, while “Agile” is the
myriad of tools and techniques to help us achieve agility.

It is important to understand how architecture
fits within agile methodologies (see chapter two),
as well as how agility can be approached in
architecture frameworks (chapter three).

https://www.iso.org/standard/50508.html.
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap03.html
https://www.agilealliance.org/agile101/
https://agilemanifesto.org

6 | Ag i l e & I T A r c h i te c t u r e

To further define what is “good enough,” outline and articulate the level of detail and amount of architecture
material required, ten key principles outline the JIT-JEA approach:

1. Understand the As-Is: Ensuring there is a holistic
view across business, data, applications, and
infrastructure of what is currently installed
and what will most likely change (not needed
for complete green field).

2. Understand the context: Discerning the context
across both business and IT, including any external
factors (regulation, etc.) that may affect the results.

3. Define the principles: Formalizing traceable
business objectives and principles, driven by
the business mission and vision.

4. Know the requirements: Understanding and/or
delivering the functional and - in particular - non-
functional requirements.

5. Record decisions: Documenting the rationale for all
architectural and design decisions, ideally reflecting
the principles and business needs.

6. Ensure traceability: Providing clear traceability back
to the business objectives within the architecture.

7. Develop the solution: Documenting the solution(s)
including investigating alternatives to ensure that
decisions are not made in isolation.

8. Assumptions and constraints: Capturing, validating,
and managing any assumptions and constraints that
affect the architecture.

9. Risks and issues: Proactively documenting and
managing risks and issues - both processes as
well as results.

10. Plan: Creating a clear and sensible plan/roadmap
 to achieve the desired business outcome(s).

The notion of JIT-JEA (Just In Time - Just Enough Architecture) aims to assist all the thousands of architects working
on agile architectures across the Capgemini Group. Working with the agile team(s), the architect can deliver:

just good enough
architecture,

just good enough
documentation,

just good enough
governance,

just in
time, and

in iteration-size
chunks.

The reason why we have (or need) an
architecture is to effectively manage risks
and costs. Using architecture frameworks like
the Open Group’s Architecture Framework5,
and Capgemini’s Integrated Architecture
Framework (IAF)14, as well as receiving
help and support from various communities,
ensures that our architects can deliver JIT-JEA.

https://pubs.opengroup.org/architecture/o-aa-standard/
https://www.opengroup.org/togaf
https://www.opengroup.org/togaf

2ARCHITECTURE
IN AGILE
At first glance, architecture design methods
and agile software development might seem
incompatible, but this is not quite the case.
Both can work seemlessly together, ensuring
that custom build applications are delivering value
for money, not just today but also for tomorrow.
In the following section we will quickly explore
how agile methods and frameworks either directly
address architecture, or at least leave room for it.

The core question remains: Is architecture
addressed by agile methodologies?

We will start by looking at the twelve principles
within the agile manifesto, before we cover the
main agile frameworks Crystal Clear6, Extreme
Programming7, Disciplined Agile Delivery (DaD)8
and Scrum9, followed by the scaled agile frameworks
Less10, Nexus11 and Scaled Agile Framework (SAFe)12.

7 | Ag i l e & I T A r c h i te c t u r e

https://newline.tech/crystal-clear-methodology/%60
http://www.extremeprogramming.org
http://www.extremeprogramming.org
https://en.wikipedia.org/wiki/Disciplined_agile_delivery
https://www.scrum.org
https://less.works
https://www.scrum.org/resources/scaling-scrum
https://www.scaledagileframework.com

8 | Ag i l e & I T A r c h i te c t u r e

2 ARCHITECTURE IN
AGILE METHODOLOGIES

Agile Manifesto

The eleventh principle of the agile manifesto refers to architecture:

The best architectures, requirements, and designs emerge from
self-organizing teams.

This is an important principle exploring the concept of emerging
architecture within agile teams.

Scrum

“Scrum does not explicitly identify an architect role.”

Scrum has 3 defined roles: Product Owner, Scrum
Master, and Team.

Architecture emerges as a result of the collaboration
of all team members, as noted within the eleventh
principle of the agile manifesto.

However, Scrum does not forbid the architect role.

An architect can be:

1. part of the team, or

2. can be outside the team, or

3. a joined effort within the team.

Crystal Clear

The architecture core concept of Crystal Clear is the “Walking Skeleton:”

“A Walking Skeleton is a tiny implementation of the system that
performs a small end-to-end function.”

The “walking skeleton” is based on an initial solution architecture,
where its completion is incremental over time.

eXtreme Programming

In eXtreme Programming the design is addressed through two
concepts of system metaphor and spikes.

System metaphor shapes the system to explain the system design
to people, without need for lengthy and detailed documents.

A spike solution is a very simple program to explore potential
resolutions in order to reduce the technical risk.

9 | Ag i l e & I T A r c h i te c t u r e

DAD

Compared to Scrum, DAD puts more emphasis on architecture,
in order to reduce technical risk through a role:

• Architecture owner: is the person who owns
the architecture decisions for the team

and through 2 practices:

• Architecture envisioning: initial high-level design

• Proven architecture: working code to justify the architecture

SAFe

In the Scaled Agile Framework (SAFe), founded in 2011,
architecture is strongly presented both as roles (Enterprise
Architect, Solution Architect and Systems Architect) and
also with artifacts (e.g. enablers, the architectural runaway,
and even new events like Architect Sync).

LeSS

In essence, the Large Scale Scrum (LeSS) is a scrum applied
across many teams.

It is believed that the agile architecture comes from the
behavior of agile architecting.

It is primarily about mindset and actions, not the use of a
particular design pattern or tool. And part of that mindset
is thinking “growing,” or “gardening,” over “architecting.”

NEXUS

As with Scrum, in Nexus architecture and the role of architects
are not defined in the Nexus guide.

The assumption is that Nexus places a heavy emphasis on
emerging architecture from the team.

However, the Nexus integration team, which is responsible for
the overall integration into a product increment should provide
at least some architectural guidance to align the teams.

3AGILE IN
ARCHITECTURE
Agility per se, is not strictly mentioned in frameworks
like TOGAF13, IAF14, or even later frameworks like IT4IT15.
However, architecture frameworks and methods are
clearly compatible with agile.

1 0 | Ag i l e & I T A r c h i te c t u r e

https://www.opengroup.org/togaf
https://en.wikipedia.org/wiki/Integrated_Architecture_Framework
https://www.opengroup.org/it4it

1 1 | Ag i l e & I T A r c h i te c t u r e

Architecture Iteration

Business Service

High Level Requirements

Logical Component

Technology Building Blocks

Physical Component

Solution Building Blocks

Agile Development

Feature Story Sprint Release

represents

refines refines

informs /
represents represents

refines refines

Value Chain

Value
Stream

Plan

• Portfolio
 Planning
• Release
 Planning
• Governance
• Architecture

• Service
 Design Mgmt.
• Requirement
 & Defect
 Tracking

• Development
• Source Control
• Backlog Mgmt.

• Build &
 Continuous
 Integration

• Functional
 Performance
 Security
• Test Mgmt
 & Automation

• Pipeline
• Release Mgmt.
• Change Mgmt.
• Risk Mgmt.

• Fulfilment
• Monitoring
 (test reuse)
• User & Log
 Analytics
 (reuse in dev.)

Design Develop Build

Requirements to Deploy
Strategy

to Portfolio
Request
to Fulfill

Detect
to Correct

Test Release Run

Architecture frameworks are built to be adapted to be tailored to a specific context. You can pick and choose,
they are not rigid methods. As a specific example, the first step in the ADM of TOGAF specifically describes the
tailoring of the framework to the specific needs of the organization.

Moreover, they are iterative, with key concepts necessary to manage evolution over time such as the “feedback
loop,” or “requirement management.”

Architecture concepts are generic and compatible with agility

As IT architects, we have been implementing these frameworks since their creation, building best practices that are
fundamentally different from the current context of today. They resulted in critical successes of enterprise and IT
transformation, but these best practices are no longer aligned with digital expectations.

Recent updates of these frameworks provide clearer guidance related to agility. With the adoption of agility, architecture
practices are evolving through two main approaches:

3 AGILE IN ARCHITECTURE FRAMEWORKS

TO G A F T M

Adaptability,
partitioning, evolution

I A F

Business goal
alignment structure

Sustainability Security Governance

Contextual

Conceptual

Logical

Physical

Business Information Information
Systems

Technology
Infrastructure

I T 4 I T T M

Flow based process and
methodology agnostic

Approach #1: translation effort

Mapping the effort between architecture frameworks and practices alongside agile methodologies.

I T 4 I T AG I L E
S C E N A R I O

I A F A N D
S A F E

Apporach #2: new framework

Another approach is to build a new framework like the recent Open Agile Architecture Framework (O-AA) 17

created by the Open Group, taking agile, lean, and design thinking concepts as foundations to create a new framework.

O P E N AG I L E A RC H I T EC T U R E F R A M E WO R K

Architecture Development

Value

Data /
Information

& AI

Software and Hardware Architecture

Experience
Perspective

Work System
Perspective

Technical
System
Perspective

Product
Architecture

Operations
Architecture

G
overnance

O
rganizationC

or
po

ra
te

 B
ra

nd
 Id

en
ti

ty

Domain-Driven
Architecture

Experience
 Design

Intentional
&

Emergent

Concurrent

Continous

Evolvable

Refactored

Eliminate the weak

Journey Maps
Value Streams

Event
Storming

C
or

po
ra

te
C

ul
tu

re

Strategy

#AGILEBYDESIGN
To enable us to further assist our architects across
Capgemini, we developed the JIT-JEA way of working.

“Does”
What the Enterprise What the Enterprise

“Is”

https://pubs.opengroup.org/architecture/o-aa-standard/

4THE JIT-JEA
CONCEPT
An agile environment requires three main
architectural stages:

• Intentional architecture at enterprise level
outlining the direction of the organization

• Emerging architecture at team level outlining
how teams are building towards the next
stable situation

• Evolving architecture where enterprise and
operational levels meet, and where emerging
and intentional architectures become aligned

1 3 | Ag i l e & I T A r c h i te c t u r e

1 4 | Ag i l e & I T A r c h i te c t u r e

Ju
st

 E
no

ug
h

D
o

cu
m

en
ta

ti
o

n

In
 It

er
at

io
n

Si
ze

 C
hu

nc
ks

JIT-JEA
Just Enough Architecture

Ju
st

 E
no

ug
h

G
ov

er
na

nc
e

Ju
st

 in
 T

im
e

4.1 THE JIT-JEA CONCEPT

In Capgemini, we refer to “Just In Time - Just Enough
Architecture.” Or simply put, “JIT-JEA.”

Developing “Just Enough Architecture” can be
characterized by the following:

O B J EC T I V E O F T H E E N G AG E M E N T

Architecture practices should not repeat “more of the
same,” avoiding decisions that are centered around
architectural guidance. Instead, architects should focus
on working with new business activities or technologies
that need to be integrated into a given environment,
project, process or solution.

M AT U R I T Y O F T H E TA RG E T AU D I E N C E

At team level, “Just Enough Architecture” forms the
blueprint of what needs to be done in the next sprint
(or set of sprints). In agile, this blueprint should leave
as much room possible for design decisions to be made
by the teams. The more experienced and knowledgeable
on the subject and on agile practices, the more room
can be left to the team, so long as the architecture
provides the guidelines to keep the team on track.

A M O U N T O F T EC H N I C A L R I S K A N D U N C E R TA I N T Y

The more technical risk, the more up-front architectural
design and/or research required. To reduce risk,
architects could define proof of concepts to
validate assumptions or explore technology choices.

CO M PA N Y C U LT U R E

A highly agile team in a non-agile company culture will
not fit well. In an organization working with fixed price
contracts, with fixed scopes and delivery dates, the
amount of upfront architecture is significantly higher
to form a better view on how much work is required.

Besides the above aspects, the main principles
of “Just Enough Architecture” include: simplicity,
continuous architecting, and structural
feedback from and towards the teams.

4.1.1 Emerging and Intentional Architecture

When it comes to “Just Enough Architecture,”
an organization should rely on the main principle
of “think big, act small, fail, and learn fast:”

• Think big: the primary objective is to build
a high standard, competitive solution, with
a clear, high-level target architecture in mind

• Act small: the teams must deliver small
operational pieces of software, clearly
demonstrating the value of enabler work

• Fail and learn fast: accept that there will
always be some form of failure - and the sooner
the better - to refactor or rebuild the architecture.

The keywords to capturing an emerging architecture
are: collaboration and continuous integration, both
of which are the foundation of any application lifecycle
management. Indeed, “Just Enough Architecture”
is not possible when staying in the “ivory tower.”
Interaction with the development teams is
fundamental and mandatory.

When considering the manifesto for agile
software development, it is clear that architects
can apply the twelve principles of the manifesto
to architecture as well. Thus, the approach to
developing an architecture, and creation of
content within the architecture can also
follow an agile approach.

1 5 | Ag i l e & I T A r c h i te c t u r e

4.1.2 Architectural Runway

Organizations need to respond simultaneously to new business challenges with larger-scale architectural
initiatives that require intentionality as well as planning. Emerging architecture alone cannot handle the
complexity of large-scale system development.

Instead, we must balance both an intentional and an emerging architecture. The SAFe concept of architectural
runway provides the technical foundation for smooth development and implementation of future business value.

The aim is to reduce technical debt and time-consuming re-work over time. For this purpose, the enablers -
and therefore the epics on the architectural runway18 - fall into one of four categories:

1. Exploration enablers supporting research,
prototyping, and/or spiking to better understand
customer needs and what solutions can be applied.

2. Architectural enablers covering guidelines, features,
and stories where the architectural runway for the
teams is created.

3. Infrastructure enablers are created to build, enhance
and automate the development, as well as test and
deployment environments.

4. Compliance enablers facilitating specific compliance
activities such as documentation,privacy and security,
and industry specific regulations.

Intentional Architecture

Enterprise Architect

Solution Architect

Solution Backlog

Architectural Runway

MVPR1

R2

Emerging Design

Program Backlog

Team Backlog

System Architect

The Team

EPIC

FEATURE

STORY

P
or

tf
o

lio
le

ve
l

P
ro

gr
am

le
ve

l
Te

am
le

ve
l

It is a foundational
set of capabilities
aligned to the
big picture that
enables the rapid
development
of new features.

EA is Control Tower

https://www.scaledagileframework.com/enablers/

1 6 | Ag i l e & I T A r c h i te c t u r e

4.1.3 Minimum Viable Architecture

4.1.4 Data Driven Architecture

Most developments in architecture take place in
an existing situation. It is therefore good practice
to use data analysis on any existing information to
support the architecture for new developments.
Gathering data can be completed to differing levels
of detail and in different ways. Examples include:

• Network performance monitoring to help identify
bottle necks in infrastructure or specific applications

• Application portfolio management to provide
clues on what systems may be loaded with technical
debt or are in need of replacement

• Day in the life of might be used as a tool to analyze
the work done by a person in a specific role indicating
waste in processes

Some techniques that might help gather and analyse
data and then decide and implement the decision
are the OODA loop20, PDCA cycle21, and the Lean A3
method22.

4.2 Just Enough Documentation

What “Just Enough Documentation” means mainly
depends on the purpose of the documentation needed,
the target audience, and the level of detail required
at a given time.

When creating architecture documentation, it should
never be done for the sake of documentation alone,
or to follow a specific process or framework, but solely
with the reader in mind.

Good practices show that Minimum Viable
Architecture (MVA)19 can be defined as
the least possible set of principles to support
the Minimum Viable Product to be released.
An MVA should be defined in accordance
with all aspects of the architecture.

However, an MVP might become part of a larger
landscape and in which case, the MVA should also
consider this future situation.

Before deciding on what documentation to produce, it
is important to have a clear view of the target audience
and their needs in terms of timing (e.g. iteration or
program) and content (e.g. drive design activities,
support technical decision, guidelines, service contracts,
communicate to stakeholders or onboard newcomers).

In addition to defining the stakeholders and their needs,
the following main principles should be used:

• Avoid any text-only documents: diagrams,
pictures or spikes, and walking skeletons are
worth a thousand words

• Avoid writing documents that are not useful:
if the reader does not need it, do not write it!

• Write efficiently: never spend more time in writing
the documentation than the time you – or others –
will gain from it

• Do not document any publicly available information:
instead use references to information already exists

• Avoid duplication of documentation across multiple
documents or locations: hold a single point of truth
to be easily maintained

• Use a centralized platform with powerful search
and update facilities

The Just Enough Documentation mantra is light but
efficient: “better less, but useful working documentation
that is read by the team, than old-school, extensive
documentation read by none.”

But how can we do that? Visual management is; a picture
is worth a thousand words. Diagrams using ArchiMate23,
UML24 and other techniques, enable clear alignment and
shared understanding across all stakeholders (including
architects and teams).

Just enough
documentation

• Tell what’s useful
• Have the scope
 and reader in mind

Comprehensive
 Documentation

• Write everything
 you know
• Details ASAP

https://www.valuebasedmanagement.net/methods_boyd_ooda_loop.html%60
https://en.wikipedia.org/wiki/PDCA
https://kanbanize.com/lean-management/improvement/a3-problem-solving
https://kanbanize.com/lean-management/improvement/a3-problem-solving
https://pubs.opengroup.org/architecture/o-aaf/snapshot/Agile_Architecture_Framework.html
https://pubs.opengroup.org/architecture/o-aaf/snapshot/Agile_Architecture_Framework.html
https://www.opengroup.org/archimate-forum/archimate-overview
https://en.wikipedia.org/wiki/Unified_Modeling_Language

4.2.1 Documentation as Code

Documentation as code (Docs as code)25 can be a
useful way to make just enough documentation.
It refers to a philosophy that you should be writing
documentation with the same tools as code and apply
versioning in the same manner as code is versioned.

However, architecture documentation is not only
meant for developers. As a result, documentation
for other stakeholders - the Architecture Decision
Record (ADR) as just one example - should be made
available in other formats as well.

Code
Repository

Docs As
Design engine

Docs As
Design doc

4.3 Just enough governance

Ideally architecture governance within an agile context
should be:

• integrated in existing agile rituals to minimize the
number of meetings and maximize collaboration and
sharing. Rather than controlling agile teams as a kind
of authority, the architect should be a part-time team
member (participating to sprint planning sessions,
demo sessions, retrospectives etc.) while acting
as a concierge efficiently guiding the teams

• distributed by design to empower architects
at the right level and within clear boundaries in
which they have the autonomy to make decisions

• data-driven, to support decision making and share
information across the organization in a transparent
and visual way

Architecture governance aims to:

• ensure alignment between emerging (team-level)
and intentional architecture (enterprise-level)

• provide mechanisms to own the technology
roadmap and identify and feed (transversal)
enablers27 into the journey

• define the boundaries in which teams and
architects have the autonomy to make
architectural and design decisions

• support architects in managing the
architectural landscape

1 7 | Ag i l e & I T A r c h i te c t u r e

https://www.writethedocs.org/guide/docs-as-code/
https://www.scaledagileframework.com/enablers/

1 8 | Ag i l e & I T A r c h i te c t u r e

4.3.1 Faster Architectural
Decision-Making

When regarding agile architecture, slow decision-
making is often one of the main challenges.
To accelerate the decision-making process,
empowerment of the right people at the right
level is needed, as easily reversable decisions
require less formality than irreversible decisions:

• Decisions of low strategic importance impacting a
single agile team - should be made by the team itself

• Decisions of low strategic importance, but impacting
multiple teams should be taken by an empowered
community

• Decisions of high strategic importance should be
taken by a team of architects at strategic to enable the
decision-making process, it is important to
define clear boundaries where each level has the
autonomy to make the appropriate decisions.

To enable the decision making process, it is important
to define clear boundaries where each level has the
autonomy to make the appropriate decisions.

It is good practice to also provide clear examples on
the governance required for different decisions, such
as changing cloud provider, changing public APIs,
experimenting with a new framework, or adopting
a new programming language to name a few.

4.3.2 Validating Solutions Against
Architectural Compliance

A typical challenge in IT architecture is the deviation
between the initially defined architecture (intentional
architecture / top-down) and the solution built by the
delivery teams (emerging architecture / bottom-up).
While teams often make such deviations for good reason,
architects may not be aware, leading to differences
between the “predefined architecture” and the
emerging “architecture as built.”

Good practices to ensure architectural compliance include:

• Rather than a simple reference architecture on
paper, a “walking skeleton” or a “working reference
architecture” offers a technical template which is
fully in line with the required architectural principles.
The reference architecture to adhere to is to be
decided upon by the architects in close cooperation
with the teams developing the products.

• Have an architectural compliance check integrated
in the “Definition of Done” (DoD) 28 to ensure that
principles and guidelines are covered in each user story.

• Embed “automated architectural compliance
checks” in the CI/CD (continuous integration/
continuous deployment) pipeline to automatically
highlight potential deviations from predefined
architectural principles.

https://www.scrum.org/resources/blog/done-understanding-definition-done

1 9 | Ag i l e & I T A r c h i te c t u r e

4.3.3 Structural Collaboration between
Architects and Delivery Teams

Often, architects can be perceived to be
“forcing decision from their ivory tower,”
without considering the realities on “the floor.”
In a successful and collaborative agile model:

• architects respect experienced professionals
in the development teams and listen carefully
to their suggestions

• architects are visible to the agile teams, ensuring
their input and guidance is recognized, valued,
and directly usable by the teams

• architects keep sight of the bigger picture
to ensure alignment between the intentional
architecture (top-down) and the architecture
emerging form the agile team (bottom-up)

• architects identify and support prioritization
of architectural topics in the product backlog,
based on inputs and continuous feedback loops
with the agile teams

• architects bring in their experience to coach,
advise, and technically support agile teams,
based on the real product rather than using
documents as the way to communicate

• architects understand agile development
practices and have frequent interaction points
with the development teams by participating
in agile ceremonies (sprint planning, sprint
review, retrospective, sprint demos, etc.)

For more information on the changing role of
the architect in agile and delivery teams, read:
the new role of the architect29.

4.3.4 Architecture Community of Practice

To maximize learning, sharing of information, and
thoughts across architects, we recommend setting
up a Community of Practice (CoP) for Architecture.
Such a group provides a platform for identifying
and discussing common challenges, allowing people
to participate in architectural decisions, supporting
teams in staying up to date with latest technologies,
and sharing learnings from architectural spikes etc.

Other good practices include:

• GEMBA walks30 offer opportunities for people
to stand back from their day-to-day work, consider
where value is created, and listen to employees
providing perfect opportunities to receive and
offer feedback on how teams are working

• The Architect Sync31 event as defined in SAFe ensures
architects stay aligned and share progress at the large
solution level

• A technology radar32 is a strong visual way to
communicate and align across teams about existing
or new techniques, tools, platforms, languages
and frameworks

4.3.5 Architecture Decision Record (ADR)

The ADR covers all decisions related to the architecture
and is therefore an important tool in the architectural
governance, even more in an agile context than in
waterfall. The main reason is that some architecture
decisions might be left to the teams, and therefore
need to be documented by the teams. As already stated
under Just Enough Documentation, the ADR needs to
be versioned as well to ensure decisions can be traced
back and changes in decisions are documented.

https://www.capgemini.com/wp-content/uploads/2017/07/the_new_role_of_the_architect_-_	 central_to_growing_your_business_in_todays_digital_world.pdf.
https://kanbanize.com/lean-management/improvement/gemba-walk
https://www.scaledagileframework.com/agile-architecture/
https://github.com/bdargan/techradar

2 0 | Ag i l e & I T A r c h i te c t u r e

4.4 Just in Time

With Agile Architecture we need to transform from
a Big Design Up Front (BDUF) approach - where the
architecture design is to be completed and perfected
before the implementation starts - to a just-in-time
approach implementing and documenting the target
architecture in an iterative way, bit-by-bit, step-by-step.

Just in Time has different meanings depending
on the level of architecture being worked on:

T E A M L E V E L

The architect focuses on what the agile teams need
for their current and next sprints. To do so, architects
should connect regularly with the agile teams to
anticipate what guidance and information they will
need at any given point in time. A good practice is
to use both formal (e.g. attending agile ceremonies)
and informal channels to connect.

E N T E R P R I S E L E V E L
The architect understands what product management
plans will be delivered by the teams in a certain
timeline (for instance six to twelve months). From
that perspective, the architect determines the enabler
epics that prepare for delivering the business needs
and what guidance will be necessary.

P RO G R A M / S O LU T I O N L E V E L
The architect reconciles the needs at both team
and enterprise level. As a rule of thumb, the solution
architect ensures that the information flowing to the
architects at team level is in time to plan their work for
the coming three to six months, bearing in mind that
the backlog is also filled with work coming from the
architects at team level.

In short: JIT (Just in Time) is critically about good
communication and being connected on different
levels from team, to enterprise.

The key question to answer is
“who needs what, by when?”

To be able to answer this question, architects must
get closer to the developments, providing more visibility
on the details without losing the broader view, vision
and strategy. Doing so allows the architects to learn
from every sprint, and receive feedback from
development team.

Some examples of good practices:

J U S T I N T I M E A RC H I T EC T I N G

Do not spend too much time on architecting
non-functional requirements when implementing
a prototype or an XP Spike, but be prepared for
the question, “when can we put this prototype
into production?”

J U S T I N T I M E D O C U M E N TAT I O N

Know what information each stakeholder needs,
and when (to prepare for a next iteration).

J U S T I N T I M E G OV E R N A N C E

Know what architecture decisions must be taken
and when; what information decision makers need
and when will they need it? Apply the principle of the
latest responsible moment, which advises to keep
important and irreversible decisions open until the
impact of not deciding exceeds the impact of deciding.
This allows decisions to be made with the maximum
possible information, but also avoids wasting time
revisiting the same discussions. Until this last possible
moment, you are learning and collecting information.

2 1 | Ag i l e & I T A r c h i te c t u r e

4.5 In iteration size chunks

The agile architecture is to be delivered “in iteration
size chunks,” meaning that the scope of what an
architect delivers should:

• fit within the amount of time that the receiving
team (or architect) has before the next delivery

• consider what preparations are required
for the coming iteration of program plan

• limit information and documentation to the
team, depending on iteration context and scope

• attend the agile events on a regular basis
(daily meeting and visit sprint review sessions)

The shorter the product delivery cycles, the smaller
the chunk of architectural information needs to be.
As a result, more teams of architects can start
working with a backlog and coordinate their work
in sprints as well.

In those situations, one of the architects takes on
the role of Technical Product Owner (TPO) for the
architecture work to be done. This TPO regularly
interacts with the POs responsible for the business
functionality to understand size and priorities in the
architecture work.

Other aspects determining iteration size chunks
are the domain and the boundaries of the context.
The clearer the domain and the context, the smaller
the amount of information necessary, since architecture
gives the guardrails within which the teams operate.

More uncertainty on boundaries leads to the need
for more information.

As a rule of thumb, the mechanism of architecture
in a day, in a week, or in a month might be helpful.

Intentional
Architecture

Evolving
Architecture

Emerging
Architecture

program
covering a
set sprints

the needs
for one
team in

one sprint

Le
ve

l o
f

D
et

ai
l

Level o
f C

ertainty

Level of Agility

Le
ve

l o
f

D
et

ai
l

Level o
f C

ertainty

Level of Agility

Le
ve

l o
f

D
et

ai
l

Level o
f C

ertainty

Level of Agility

Solution
Architecture

B
us

in
es

s

In
fo

rm
at

io
n

A
pp

lic
at

io
ns

In
fr

as
tr

uc
tu

re

B
us

in
es

s

In
fo

rm
at

io
n

A
pp

lic
at

io
ns

In
fr

as
tr

uc
tu

re

B
us

in
es

s

In
fo

rm
at

io
n

A
pp

lic
at

io
ns

In
fr

as
tr

uc
tu

re

Solution
Architecture

Solution
Architecture

Architecture in an Iteration Architecture in Program Increment Architecture in Months

The higher the amount of agility (team level),
the faster the architecture documentation
can be prepared. At enterprise level, the direction
is usually more stable and thus more architecture
documentation (relative to the team level)
can be prepared for future use by the teams.

2 2 | Ag i l e & I T A r c h i te c t u r e

4.6 Concluding remarks on JIT-JEA

Agile architecture is not a unicorn - a physically impossible
role without definition. Architecture can fit well within
agile methodologies just as agility fits within architecture
frameworks. Agile architecture is possible, but sharing
and implementing good practice is fundamental, and
Just In Time - Just Enough Architecture (JIT-JEA) is key.

However, this is not the end state for agile architecture.
It is merely a starting point (MVP if you wish) to be
further elaborated over time. Future versions of this
POV might cover aspects such as “how IT architecture
can help to create business agility,” “how architects
behave in an agile environment,” or “the benefits
of agile architecture as seen from a CIO perspective.”

Every IT system has an architecture, whether you
are conscious about it or not.

In a similar thought you could say that every IT person
directly or indirectly contributes to IT architecture.

So, agile or not, be conscious about it.

There is a role for an Agile Architect whether it’s
a Platform Concierge, a Product Owner for Enablers,
an Architecture Coach to Agile Teams, or Architect
as a Service.

5BIBLIOGRAPHY
R E F E R E N C E S

1 . I S O 2 2 0 1 0 : 2 0 1 7 . I S O. o r g . [O n l i n e] h t t p s : / / w w w. i s o . o r g / s t a n d a r d / 5 0 5 0 8 . h t m l .

2 . D e f i n i t i o n s i n TO G A F. TO G A F. [O n l i n e] h t t p s : / / p u b s . o p e n g r o u p . o r g / a r c h i te c t u r e / to g a f 9 - d o c / a r c h / c h a p 0 3 . h t m l .

3 . Ag i l e A l l i a n c e . [O n l i n e] h t t p s : / / w w w. a g i l e a l l i a n c e . o r g / a g i l e 1 0 1 / .

4 . Ag i l e M a n i f e s to . [O n l i n e] h t t p s : / / a g i l e m a n i f e s to . o r g / .

5 . G r o u p , O p e n . [O n l i n e] h t t p s : / / p u b s . o p e n g r o u p . o r g / a r c h i te c t u r e / o - a a - s t a n d a r d / .

6 . I A F - I n te g r a te d A r c h i te c t u r e Fr a m e wo r k (W i k i p e d i a) . [O n l i n e] h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / I n te g r a te d _ A r c h i te c t u r e _ Fr a m e wo r k .

7 . C r y s t a l C l e a r. C r y s t a l S o f t w a r e D e ve l o p m e n t . [O n l i n e] h t t p s : / / n e w l i n e . te c h / c r y s t a l - c l e a r- m e t h o d o l o g y / .

8 . X P - e X t r e m e P r o g r a m m i n g . [O n l i n e] h t t p : / / w w w. e x t r e m e p r o g r a m m i n g . o r g / .

9 . Da D. [O n l i n e] h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / D i s c i p l i n e d _ a g i l e _ d e l i ve r y .

1 0 . S c r u m . [O n l i n e] h t t p s : / / w w w. s c r u m . o r g / .

1 1 . L E S S . [O n l i n e] h t t p s : / / l e s s . wo r k s / .

1 2 . N e x u s . [O n l i n e] h t t p s : / / w w w. s c r u m . o r g / r e s o u r c e s / s c a l i n g - s c r u m .

1 3 . S A Fe . [O n l i n e] h t t p s : / / w w w. s c a l e d a g i l e f r a m e wo r k . co m / .

1 4 . TO G A F. [O n l i n e] h t t p s : / / w w w. o p e n g r o u p . o r g / to g a f.

1 5 . I T 4 I T (T h e O p e n G r o u p) . [O n l i n e] h t t p s : / / w w w. o p e n g r o u p . o r g / i t 4 i t .

1 6 . T h e O p e n G r o u p . I n t r o d u c t i o n to t h e A D M . TO G A F S t a n d a r d ve r s i o n 9 . 2 . [O n l i n e] h t t p s : / / p u b s . o p e n g r o u p . o r g / a r c h i te c t u r e / to

 g a f 9 - d o c / a r c h / c h a p 0 4 . h t m l # t a g _ 0 4 _ 0 3 .

1 7 . O p e n Ag i l e A r c h i te c t u r e . T h e O p e n G r o u p . [O n l i n e] h t t p s : / / p u b s . o p e n g r o u p . o r g / a r c h i te c t u r e / o - a a - s t a n d a r d / .

1 8 . E n a b l e r s i n S A Fe . S c a l e d Ag i l e Fr a m e wo r k . [O n l i n e] h t t p s : / / w w w. s c a l e d a g i l e f r a m e wo r k . co m / e n a b l e r s / .

1 9 . M VA (O p e n G r o u p) . [O n l i n e] h t t p s : / / p u b s . o p e n g r o u p . o r g / a r c h i te c t u r e / o - a a f/ s n a p s h o t /Ag i l e _ A r c h i te c t u r e _ Fr a m e wo r k . h t m l .

2 0 . O O DA m o d e l . Va l u e B a s e d M a n a g e m e n t . [O n l i n e] h t t p s : / / w w w. v a l u e b a s e d m a n a g e m e n t . n e t / m e t h o d s _ b oy d _ o o d a _ l o o p . h t m l .

2 1 . W i k i . P D C A Cy c l e . [O n l i n e] h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / P D C A .

2 2 . K a n b a n i ze . L E A N A 3 . [O n l i n e] h t t p s : / / k a n b a n i ze . co m / l e a n - m a n a g e m e n t / i m p r ove m e n t / a 3 - p r o b l e m - s o l v i n g .

2 3 . A r c h i m a te . T h e O p e n G r o u p . [O n l i n e] h t t p s : / / w w w. o p e n g r o u p . o r g / a r c h i m a te - f o r u m / a r c h i m a te - ove r v i e w.

2 4 . U M L . W i k i . [O n l i n e] h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / U n i f i e d _ M o d e l i n g _ L a n g u a g e .

2 5 . d o c s - a s - co d e . [O n l i n e] h t t p s : / / w w w. w r i te t h e d o c s . o r g / g u i d e / d o c s - a s - co d e / .

2 6 . E n te r p r i s e A r c h i te c t u r e D o co p s . [O n l i n e] h t t p s : / / c a p g e m i n i . g i t h u b . i o/ a r c h i te c t u r e / e n te r p r i s e - a r c h i te c t u r e - d o co p s / .

2 7 . S A f e . E n a b l e r s . [O n l i n e] h t t p s : / / w w w. s c a l e d a g i l e f r a m e wo r k . co m / e n a b l e r s / .

2 8 . D e f i n i t i o n o f D o n e . S c r u m . [O n l i n e] h t t p s : / / w w w. s c r u m . o r g / r e s o u r c e s / b l o g / d o n e - u n d e r s t a n d i n g - d e f i n i t i o n - d o n e .

2 9 . M e n ze l , G u n n a r. [O n l i n e] 2 0 1 7 . h t t p s : / / w w w. c a p g e m i n i . co m / w p - co n te n t / u p l o a d s / 2 0 1 7 / 0 7 / t h e _ n e w _ r o l e _ o f _ t h e _ a r c h i te c t _ - _

 c e n t r a l _ to _ g r ow i n g _ y o u r _ b u s i n e s s _ i n _ to d ay s _ d i g i t a l _ wo r l d . p d f.

3 0 . G e m b a Wa l k . [O n l i n e] h t t p s : / / k a n b a n i ze . co m / l e a n - m a n a g e m e n t / i m p r ove m e n t / g e m b a - w a l k .

3 1 . S A Fe Ag i l e A r c h i te c t u r e . [O n l i n e] h t t p s : / / w w w. s c a l e d a g i l e f r a m e wo r k . co m / a g i l e - a r c h i te c t u r e / .

3 2 . Te c h n o l o g y R a d a r. G i t H u b . [O n l i n e] h t t p s : / / g i t h u b . co m / b d a r g a n / te c h r a d a r.

2 3 | Ag i l e & I T A r c h i te c t u r e

https://www.iso.org/standard/50508.html.
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap03.html.
https://www.agilealliance.org/agile101/
https://agilemanifesto.org/.
https://pubs.opengroup.org/architecture/o-aa-standard/
https://en.wikipedia.org/wiki/Integrated_Architecture_Framework
https://newline.tech/crystal-clear-methodology/
http://www.extremeprogramming.org/.
https://en.wikipedia.org/wiki/Disciplined_agile_delivery.
https://www.scrum.org/.
https://less.works/
https://www.scrum.org/resources/scaling-scrum.
https://www.scaledagileframework.com/.
https://www.opengroup.org/togaf
https://www.opengroup.org/it4it
https://pubs.opengroup.org/architecture/to gaf9-doc/arch/chap04.html#tag_04_03.
https://pubs.opengroup.org/architecture/to gaf9-doc/arch/chap04.html#tag_04_03.
https://pubs.opengroup.org/architecture/o-aa-standard/.
https://www.scaledagileframework.com/enablers/
https://pubs.opengroup.org/architecture/o-aaf/snapshot/Agile_Architecture_Framework.html.
https://www.valuebasedmanagement.net/methods_boyd_ooda_loop.html
https://en.wikipedia.org/wiki/PDCA.
https://kanbanize.com/lean-management/improvement/a3-problem-solving.
https://www.opengroup.org/archimate-forum/archimate-overview
https://en.wikipedia.org/wiki/Unified_Modeling_Language.
https://www.writethedocs.org/guide/docs-as-code/.
https://capgemini.github.io/architecture/enterprise-architecture-docops/.
https://www.scaledagileframework.com/enablers/.
https://www.scrum.org/resources/blog/done-understanding-definition-done.
https://www.capgemini.com/wp-content/uploads/2017/07/the_new_role_of_the_architect_-_ central_to_growing_your_business_in_todays_digital_world.pdf
https://www.capgemini.com/wp-content/uploads/2017/07/the_new_role_of_the_architect_-_ central_to_growing_your_business_in_todays_digital_world.pdf
https://kanbanize.com/lean-management/improvement/gemba-walk.
https://www.scaledagileframework.com/agile-architecture/.
https://github.com/bdargan/techradar.

6
AUTHORS

A special thanks to the other Capgemini Colleagues:

Monika Demichowicz (Poland), Greg Holliday (US), Jorge Rodriguez Oporto (Spain), Marien Krouwel
(Netherlands), Andreas Lutz (Germany), Bjorn Gronquist (France) and Yann Ducrocq (France).

G U N N A R M E N Z E L

Capgemini Master Architect and CTIO for Europe

North and Central.

Gunnar is the Chief Technology & Innovation

Officer for Capgemini Europe North and Central.

As a Certified Master Architect and Certified IAF

Master Architect he is a member of Capgemini’s

Global Architecture Board, and as a senior leader

within Capgemini’s Global Architecture Community,

he plays a key role in setting the direction of the

architecture profession across the Group. Over the

past thirty years, Gunnar has successfully worked

with many organizations to either transform to an

agile model and/or apply agile mindsets and tools.

G E R T H E L S E N

Gert is a Chief Architect in Capgemini working

in the Financial Services sector.

Being passionate about people and IT technology,

Gert is active as coach, mentor and certified

trainer for many architects across the Capgemini

group. In addition, he leads an Innovation Service

and acts as Chief Account Architect for a strategic

Financial Services client based in Europe.

W I G E R L E V E R I N G

Dutch Architects Community Lead.

Wiger is Account Chief Architect for the

department of Education, Culture & Science in

the Netherlands, including the education sector.

Next to his activities in developing architectures,

he works with architects on finding their role in

an agile context.

Over the past thirty years, he has successfully

lead teams in developing architectures that

guided a transformation towards developing

agile application landscapes and agile ways

of working at scale.

S T E FA N O ROS S I N I

Italy BU Industrialization Leader, Capgemini

Chief Architect and Agile Coach.

Stefano is the Italy BU Industrialization leader.

He is a Capgemini Chief Architect expert

in services architecture SOA and MSA and

he is also an Agile evangelist and coach.

Stefano loves the topic of Agile Architecture

since he really loves both of them: Agile and

Architecture.

He leads the DevOps global community and the

Italian communities about Agile and Architect.

J E A N - P H I L I P P E D E F R A N C E

Group Portfolio Enterprise Architect, Capgemini

Senior Architect, Agile Community Leader.

Over the last 15 years, Jean-Philippe combined

his expertise in architecture, design thinking and

agile to lead successfully large IT transformations.

He now defines how Capgemini manage its

portfolio of service priorities worldwide

and drive the development of new offerings.

PA S C A L E S P I N O U S E

Digital & Innovation Architect, Capgemini

Chief Architect.

Pascal is a Chief Architect in Capgemini,

specialized in Digital Transformation

and Innovation. Led by passion, Pascal is a

trainer and mentor within the Capgemini

Global Architects Community. Leader of his

practice’s Architects Community, he is also

part of the Core Team leading the 1000

plus Architects of Capgemini France.

2 4 | Ag i l e & I T A r c h i te c t u r e

2 5 | Ag i l e & I T A r c h i te c t u r e

About Capgemini

Capgemini is a global leader in partnering with companies to transform and manage
their business by harnessing the power of technology. The Group is guided everyday
by its purpose of unleashing human energy through technology for an inclusive
and sustainable future. It is a responsible and diverse organization of 290,000 team
members in nearly 50 countries. With its strong 50 year heritage and deep industry
expertise, Capgemini is trusted by its clients to address the entire breadth of their
business needs, from strategy and design to operations, fuelled by the fast evolving
and innovative world of cloud, data, AI, connectivity, software, digital engineering and
platforms. The Group reported in 2020 global revenues of €16 billion.

Get the Future You Want | www.capgemini.com

Copyright © 2021 Capgemini. All rights reserved.

