
© Capgemini 2023. All rights reserved 1

CR033
Good data 
plumbing 
with 
Rick Houlihan 
- MongoDB



© Capgemini 2023. All rights reserved 2

CR033
Good data plumbing with 
Rick Houlihan - MongoDB
Disclaimer: Please be aware that this transcript from the Cloud Realities podcast has been 
automatically generated, so errors may occur.



© Capgemini 2023. All rights reserved 3

[00:00:00] Just root your dings through your headphones. That’s what I do. So the dings 
come through ear, not through the speakers. Root your dings. Root your dings. You need to 
root your, dings it out.

Welcome to Cloud Realities, a conversation show exploring the practical and exciting 
alternate realities that can be unleashed through cloud driven transformation. I’m David 
Chapman. I’m Sjoukje Zaal, and I’m Rob Kernahan. And this, and I’m Rick. Oh, I didn’t know. 
You don’t worry. I, I’m getting to you, Rick

And this week we’re going to be talking about the importance of the underlying technical 
plumbing when it comes to data. Data gets [00:01:00] talked about a lot. It is mission critical 
in terms of creating strong, personalized experiences, but what goes on underneath the 
covers, how does the engine work and why are some.

Decisions better than others for not just the efficiency of your systems, not just the speed of 
response and the ability to bring data together, but also for the planet.

Joining us this week is Rick Houlihan Field, CTO O for strategic accounts at MongoDB. 
Welcome, Rick. Great to see you. Do you wanna introduce yourself and tell us a little bit 
about what you do? Sure, thanks Dave. Really happy to be here. As you mentioned, I’m the 
field CT o for strategic accounts at MongoDB.

Long history in the no SQL technology category. That’s a little bit what we’re here to talk 
about today, I spent many years at AWS. I left as the worldwide leader for techno for no SQL 
services, at AWS. And this is actually my second stint here at MongoDB, really happy to be 
here talking about pet, technology.

I’m [00:02:00] very passionate about and, yeah, it’s a little bit about me. Over the course 
of the season, we’ve talked a lot about the importance of data becoming a data-driven 
organization. Obviously the absolutely critical and unbreakable relationship between data 
and AI and how that’s evolving and the importance of dataset.

What it would be great to start with, Rick, is maybe a step back. And let’s just talk about 
database technology a little bit. Maybe give us a perspective from your bridge on the 
evolution of database technologies and where we’re up to at the moment. Sure. So, um, 
Yeah, I mean, I guess that’s, that’s a really good question.

I mean, honestly, database technologies evolved in many ways over the years. We weren’t 
really born with a, a relational database, so to speak, right? The, we evolved many 
technologies over the years, and one of the things I like to refer to when I talk about this is, is 
really what drives change in, in data processing.

And it comes down [00:03:00] to, you know, what I call data pressure, right? The ability of the 
system to process the amount of data that we’re asking it to. Process in a reasonable time 
or at a reasonable cost when one of those dimensions is broken, you know, we’re going to 
invent something. And we’ve invented many things over the years.

You know, the relational database was the end of a long line of innovations, and it’s one 
that’s carried us for four year, 50 years. But, you know, as we’ve seen, the efficiency of 
processor technology start to decline and the, and the, and the effectiveness or the. The 
relevance of Moore’s Law, you know, starts to, fade.

, we’re starting to see the same types of problems we’ve seen many times over the years, 
right? Data pressure, you know, is the system able to process at a reasonable time or 
reasonable cost? And, and that’s where no SQL databases have come in to play here, to try 
and address, you know, some of these problems.



© Capgemini 2023. All rights reserved 4

And for those listening that maybe don’t even know what SQL is. Never mind no sql. Perhaps 
you could help us with a few distinctions of relational databases and how no SQL fits in. Sure. 
[00:04:00] Absolutely. So, you know, in the, in the late seventies, um, a guy named Edgar Cod, 
a very, famous technologist, very smart gentleman, invented the normalized relational data 
model, which is really the foundation of, of modern database technology.

At the time when, when Mr. Cod’s team built this technology, his mission was to enable 
people to ask questions of their data without having to write code, and at the. You know, up 
until the relational database and the introduction of the relational database answering ad 
hoc questions, you know, running those ad hoc queries that we’re also used to, you know, 
creating reports, really involved a lot of engineering, because the data structures on disc 
were.

Were tightly coupled to the access patterns with which they supported those O L T P 
workloads, right? The, the transactional workloads, that they, that they supported. But the 
business, you know, we always need to ask questions, right? What were the, you know, what 
was the average sale price in the last 30 days?

You know, who, you know, various reports and whatnot, we need to run. [00:05:00] And, 
and that was a real problem. So the relational database was really built with that purpose 
to allow people to ask questions, and over the years, you know, as processor technology 
evolved and became more efficient, the biggest criticism of the relational database, which 
was that the, the normalized relational model was inefficient compared to, you know, the 
hierarchical management systems of the day, it kind of went away, right?

Because the processors got to the point where we didn’t notice the pain, so much. You know, 
again, as we’ve seen in the last decade, this kind of slow down in the efficiency of Moore’s 
Law or the relevance of Moore’s Law. These same questions now are starting to rear their, 
their ugly head again, so to speak.

As people start to look at the relational database and say, you know, it’s kind of expensive. 
And that’s, that’s exactly where, you know, the no SQL databases start to come into play 
because they, they take, they take notes from, you know, the, the old hierarchal management 
systems, and they, and they allow.

Users to be able to ask those complex questions because the, today we have the C P U, 
[00:06:00] bandwidth and, and performance and the storage throughput to be able to 
run those ad hoc queries on de-normalized data. You know, back in 1970, 1980, when the 
relational database was introduced, that was just not even a concept that was feasible.

Today, not so much. Right? So there’s, there’s things we can do to optimize the model 
for those high velocity access patterns and still be able to run. Those ad hoc queries and 
generate those reports, albeit maybe not as efficiently, but that’s not as important when we, 
you know, the, it’s more important to optimize those high velocity access patterns, right?

The things that run thousands of times a second, not the thing that runs once a day, right? 
The thing that runs once a day, I just need to be able to do it, I don’t necessarily care about 
how efficient it is, but if you’ve running a transactional workload that’s hitting, you know, 
dozens, hundreds, thousands of transactions per second, Now that’s where you’re spending 
your money.

So optimizing, you know, the data model for those patterns, is very important and that’s 
what no SQL databases do. So perhaps let’s look at why that’s interesting and strategic, 
[00:07:00] but more through the eyes of a forever business user. How does that show up to 



© Capgemini 2023. All rights reserved 5

me? Say, in today’s world where I may have, you know, multiple data backends, I may have a, 
I may have a data lake, I might be trying to pull information together from multiple different 
sources.

How does no SQL actually help me with that? And, and what’s the material difference? And 
that’s a really good question. So, you know, traditional no SQL databases, they’re really not 
well suited for those types of workloads that you just mentioned, right? The data lake, the 
business analyst, and, and this is where MongoDB really starts to differentiate itself from the 
pack.

I mean, one of the things that we recognized early on is the developers, they need more than 
a database, right? They need a data platform. They need a technology that allows them to 
run and scale efficiently, but still be able to support. These, you know, ad hoc queries, right? 
The, the reports, the reporting workloads, the ola, you know, workloads, MongoDB strives 
to give developers this because we have integrated best of breed technologies into our 
platform [00:08:00] that go beyond the traditional no SQL database.

, but you know, the core of the no SQL database still exists. It’s the idea. Behind no SQL is 
that, you know, the data model, an abstraction of a da, an abstract data model does not 
support a well-known access pattern as efficiently as a finely tuned or tightly coupled data 
model. Right? This is what we actually knew back in the seventies when they, you know, were 
first developing the relational database.

The biggest criticism was that. You know, the cost of the join, it’s expensive to join tables, 
and that cost is felt in cpu, you know, back in the 1980s, early eighties, that was expensive. 
And so the idea for using, of reusing a relational database for O LTP workloads, you know, 
that didn’t start happening until.

You know, the, the processor efficiency started coming into play in the late eighties, 
early nineties. Today, again, we’ve seen now that the, the, we’re kind of a flattening of, of 
processor performance over the last decade, and, and we’re starting to see a separation 
[00:09:00] of efficiency between no SQL workloads that are tightly coupled to the access 
pattern.

And relational database workloads that are agnostic to all the access patterns, right? The 
abstract data model of the relational database requires a lot of cpu,, it, it, it burns a lot of 
CPU time to produce the results. And in the no SQL database, essentially we’re trying to 
store the data in the same format.

That it’s actually accessed in. So essentially we don’t have to join the data, we don’t have to 
restructure the data to deliver the, the query result, not nearly as much as you would have 
to in the relational database. And this is really what drives that efficiency. As you were just 
going through the seventies and eighties there, Rick, I saw Rob nostalgically smiling.

So staring, remembering my childhood. What was it like in the seventies when you were 
trying to, lower the cost of relational databases? It was a simpler time, Dave, back when 
computers made sense. Yeah. Yeah, yeah. I love it. It’s totally true. Right? Just a lot less 
moving parts, right? Yeah, exactly. Exactly.

Yeah. [00:10:00] Right. So what that means then, for me as a business user, it means what? 
It means faster response time on query. Does it mean sort of more flexibility in query? Just 
to give you some context here, some of the workloads that I teams, I worked at Amazon 
retail on the project they called Rolling Stone, which was a, a, a mass migration of relational 
technology, of relational workloads to no sql.



© Capgemini 2023. All rights reserved 6

And I’m talking to some of those teams today, five years later, and they’re telling me today 
they’re just starting to hit the same level of database spend that they had five years ago. 
And they’ve grown 3, 4, 5 x. So if you think about the cost efficiency it, that’s where it comes 
home for the business user, right?

You don’t wanna spend money on things you don’t need to spend. So why spend money 
joining tables when I could use a no SQL database that does it more efficiently? That’s the 
bottom line. I think when I characterize it in my head, the no SQL database came out of a 
requirement for a different use case.

Like you said, this is too expensive from a technical perspective to do the use case, which 
was retrieve an object quickly when I had the exact point of [00:11:00] entry, and I knew 
exactly what I wanted. So keyed something very specific, and then over time I’ve seen no SQL 
capability. Grow and start to introduce topics and extra capabilities.

So this Venn diagram of the capability is starting to merge again, and I’m keen to get your 
view on as the database technologies evolved and mature, they’re blurring the lines of what 
they can do. And maybe selection isn’t as easy as, I’ve got this use case, I’ll use this database. 
Whereas they’re all sort of offering all things to all people.

They’d be interested to know what you say going from that use case world to, I can do 
everything type. Position, is there still a way to think about what’s best for what scenario? 
What’s best for what use case? Yeah. So, this talks to you the, the core of, you know, the 
developer data platform, which is Atlas.

, the bottom line is developers have been asking for decades for more than a database, right? 
I mean, the advent of index of search technology with solar and, and elastic and, and lucine, 
which backs both of those, you know, the reality is that a database today is a lot [00:12:00] 
more complex, like you said.

Earlier, it’s a lot more moving parts and you know, developers have much more rich 
requirements, so, you know, in order to be able to offload the heavy lifting, so to speak, 
right? Developers don’t want to focus on moving data around between disparate systems 
and learning multiple APIs to be able to, you know, support their workloads.

You know, we built the developer data platform, which is MongoDB Atlas, and it’s the, it 
really is the core of your question, right? It’s, you know, we used to use NoSQL for these 
certain category of workloads, but we’ve. API evolve and expand, to address, you know, more 
than just the traditional no SQL workload.

So, and today what it comes down to is that if you wanna drive efficiency in the system, 
then you, what you wanna do is model for your common access patterns, right? The high 
frequency patterns, the things that you run, you know, at, at high velocity. We still need to 
be able to support those other patterns and that’s where the API extensions have come in 
over the years.

Right, we support, you know, SQL APIs exactly. For that. I think there was another question. 
And, and I was, I was going to say [00:13:00] it is a very good point you’ve just hit on there, 
which was the database used to be a very specific domain where the database expert Yeah. 
Would write your psql and you would call it.

And now the capability of I’m a developer is merging with the, I also understand the access 
pattern to the database, that full stack view. Cause it used to be, There’s a database expert 
and there’s a coder, and the two have to work together to create a system. And now with 
these platforms developing and they’re ever increasing sophistication, I see it that the 



© Capgemini 2023. All rights reserved 7

developer is now able to take or come down into that data domain and work in it a lot more 
because the platforms have become more sophisticated.

I totally agree with that. There’s, there’s enough abstraction to say we don’t need a very 
specific database person anymore to tune it to within an inch of its life. Well, if you think 
about it, the relational database and the normalized data model is really an abstraction 
between the application and its data, right?

I’m going to have application layer objects that we’ve defined that developers work with 
to, to craft these objects that are used in the application. And when I [00:14:00] store those 
objects in the database, I’m going to break those objects apart into little bits and pieces 
and store them as rows across tables that, you know, eventually get joined back together to 
reproduce the object that the application is.

I mean that’s a lot of, that’s a lot of data movement just to, to deconstruct and reconstruct 
the objects. You know, the developers know what objects they need. They built them. 
Yeah, they designed them right. And they know how the applications use those objects. So 
honestly, it’s better to be able to tightly couple the database to those object data structures 
because that’s essentially is exactly the mantra in no sql, right?

Data that is accessed together should be stored together either in a common collection. 
Or an embedded document and, and what, what, and the choice between the common 
collection or the embedded document approach really comes down to how is the data 
actually accessed? I, is it accessed in bits and pieces, or is it accessed in big, large chunks?

Right? If it’s bi in bits and pieces, we’re going to want to create small documents that are 
linked together with indexes. And what we found at Amazon was really interesting when we 
broke [00:15:00] down the access patterns of 10,000 services that were running on those 
relational database clusters, right? 3000 Oracle server instances, 70% of the access patterns 
were for a single row of data.

On a single table, another 20% of those patterns were for a range of rows on a single table. 
And at first we kind of said, well, this is crazy what’s going on here? But when you think 
about it, it actually makes a lot of sense because O L T P workloads are often extremely right, 
heavy. They, they al sometimes the data almost never gets read.

It just gets written. Over and over again, and every now and then somebody will read it 
when they’re troubleshooting or they wanna see an order status or whatnot. But most of 
the time the data is really being worked with in those little bits and pieces. So in the no SQL 
environment, essentially, sometimes creating those big, large embedded documents is not 
the most efficient way to work with the data and the people who know how to do that.

It’s not the DBA. Right, it’s, it’s the developer because they’re the ones that wrote the code 
so they know what data they need. So once we kind of get developers over that hump of 
thinking about how to store the data the same way the app uses it, it’s funny how fast they 
move [00:16:00] because they’re really working with familiar.

Structures now. Right. Things that they don’t have to decompose. Right. One of the points I 
didn’t wanna lose back there somewhere, Rick, was the point of efficiency and cost reduction 
and the point you made in the Amazon case study about the fact that, you know, it’s taken 
them five years to get back from a, from a processor consumption point of view to where 
this started.

And obviously there’s been a, a, you know, maybe it’s not exponential, but huge growth 
in the data sector during that period. So that, that efficiency is amazing, but there’s a 



© Capgemini 2023. All rights reserved 8

sustainability point in there as well, right. You, you, you’re burning less energy when you’re 
doing that. That’s exactly right. And I say that all the time.

You know, if you think about the cost of the relational database, it can be measured in global 
warming. And that’s no joke. I mean, the amount, it was the biggest criticism of the relational 
database in the normalized data model at the time was the CPU efficiency of the joint. And 
we just kind of ate it over the years as, as Moore’s law kind of made that pain.

Go away. It never really went away. Right? We, if you think over how many, how much 
infrastructure has been deployed just to join tables [00:17:00] and, and, and this is not my 
thinking, right? I mean, this is not like new thinking either. Edgar caught himself, called this 
out in his, in his, you know, seminal paper, a relational model of data for large shared data 
banks.

He talks about the efficiency of normalization on storage for deduplication of data on 
disc, for transmission of bulk data across systems. But he also talks about the efficiency of 
denormalization, that introducing strong redundancies into the stored set will reduce the 
load on the CPU U for some queries.

He says some queries, but the reality is what are those queries? Well, those are the ones that 
are running thousands of times a second. Those are the ones we care about, right? The other 
ones. I don’t care how much CPU U it takes to carve through my de-normalized data and 
produce a summary that I’m looking for.

Well may maybe stepping up the stack a little then and coming at data from a slightly 
different angle. So one of the things that we’ve talked about in a number of episodes of 
the show this year is, For all of the talk of of big data searchability [00:18:00] and the most 
recently large language models, organizations are still actually struggling with how to 
become a data-driven organization, like the leverage of data.

The data model, like the overall data architecture, any kind of master data architectures that 
are, that are running, we don’t seem to have made that any easier yet, it seems to me. So I 
wonder what your perspective is on, you know, how easy might it get for organizations to 
leverage their data over the course of the next five years or so?

Oh, that’s a really good question. You know, they, it we’re talking about, A, a transformation, 
right? A technology transformation in the industry, in the enterprise. And, and what we ran 
into at Amazon was,, it was really mixed results with that exercise. And that was, and, and 
part of that was developers trying to use a new technology, essentially running through the 
same problem that happens, you know, endlessly, is that we don’t really know how to use this 
technology.

So what are we going to do? We’re going to try and use it the way we know how to use a 
database. Well, It’s not [00:19:00] the right way to use an o SQL database is to, is to use the 
same data models, right? So what we needed to do was get developers over that hump, 
right? How do you get, developers familiar with this new technology in real time so that they 
can be effective using it?

And, and what we found was, that it’s a little different. Teaching people no, SQL is not the 
same as the relational database, right? As we all know, in the relational database, you have 
a lowest common denominator, right? We have, you know, parent child relationships, many 
to many relationships, and we can map these things out in the e r d and we can, you know, 
essentially define a logical data model that maps directly to our stored.

Data model, right? In no sql, that’s not the case. Essentially, what we still want that logical 



© Capgemini 2023. All rights reserved 9

data model, but then I need to understand how am I accessing the data and then I’m going to 
go ahead and craft a document structure to map to that, right? And so in order to be able to 
get developers familiar with this process, what we found was it’s not about doing workshops 
and, and brown bags.

That you can get away with that with the relational database cuz it’s the lowest common 
denominator. And I only have [00:20:00] to teach you one thing and then you’re off and 
running. Right. And, and honestly, all of us around the table here, we can look and say when, 
how many times did someone have to explain that idea to you, right.

Of a parent-child relationship? Right. Once you never had to hear it again. Right? Because 
it was. You know, it was very fundamental. Reality is no sql, it’s about the access pattern, 
right? The access pattern defines the data model. So what we actually did at Amazon was we 
stopped the whole idea of the traditional developer relations approach.

No more brown bags, no more, you know, workshops and, and hackathons. Instead, what we 
did was we focused on what we called design reviews. We would sit down with the team for 
an hour, we talk to them about their workload. We map out a document data model or an 
object data model structure that works for them, and then they’re off and running.

So it’s, it’s, it’s kind of like once you show the developer how to solve the problem they’re 
working on with this technology, guess what? It’s like you get that light bulb moment. That’s 
what we always, I call it when we see around the table, someone sits there and goes, oh my 
gosh, I never thought I could, I could actually model data that way.

So the key to the problem does that get [00:21:00] around the torturous process that 
enterprises in particular have been wrestling with for. I don’t know, the last 20, maybe even 
30 years of They’ve got organic growth of data. Yeah. They’ve got data in pockets all the way 
across their organization. Yeah. Like D does what you are describing get around the.

Torturous process of normalizing all of that, pulling all of that together, you know? Right. No, 
I mean, I, I wish I could say yes. I, I don’t know. I mean, it might make it easier. Right. I’m just 
going to say, Rick, I think there’s probably a business in it. If we can have, you just had a, a 
unique idea, David. You know, there’s always going to be And that’s copyright cloud realities 
productions, by the way.

Exactly, exactly. No, there’s always going to be a bit of data architecture involved here. One 
of the things that I think was said earlier how we don’t no longer the developer can become 
the dba. You know, I would say to a certain extent, yes, they can help inform the model more, 
but the DBA and those skills are still.

[00:22:00] Heavily required even with no SQL databases, right? To, to be able to recognize 
which access patterns and how to model the data for those access patterns. A lot of that skill 
set is actually very similar to the skills that DBAs use when they optimize a relational data 
model. Right? Right. What do you do now?

You sit there and you look at the query query analyzer and what’s burning this, where to put 
the indexes and all that. The difference is that with no sql, it’s more important that the data 
model is right. Then it, then it’s, it’s difficult to correct after the fact. Right? So you’re going 
to see it’s actually good because you get the data, you get the DVAs more engaged in the 
beginning of the process instead of after everything’s falling apart.

Right. And, and theoretically, hopefully they prevent the building from burning down. Right? 
So I would say that those skills are still hugely valuable, with no SQL database. It’s the, um, 
the classic it rise and fall and rise and fall again, isn’t it? So there was the. The database 



© Capgemini 2023. All rights reserved 10

domain where the specialist went in and then we said, oh, the developer can do it.

It’s dead easy, abstract, don’t act as bad. And then we went, hang on a minute. That’s not fix 
the problem. We need data centric [00:23:00] people to come and fix it again. So it’s the, um, 
it’s the, it’s, it’s like we were talking earlier on other podcasts, it’s like enterprise architecture 
it was in, and then everybody, we don’t need enterprise architecture anymore and then 
realize that well actually there was a bit of a value in somebody looking at the whole thing.

End two end and maybe we should reintroduce it. I think data’s gone through that cycle. It’s 
come back and gone. No, it is a discipline and a skill we need. Yeah. Well, you know, we do 
need to understand how data moves around and how, and, and, and honestly, a lot of what 
we do in my team, we, we sit with these, with development teams.

We break down their workloads, but a lot of it is the fact that we really understand how data 
moves inside out in, inside the MongoDB. Right. Knowing the internals of the database. It’s 
the same thing with Oracle or Postgres or anything, right? You need to understand how row 
column storage works to be able to optimize the data model, right?

And, and developers don’t necessarily understand things that deep. Right down in the 
database, right? They might know how to create a normalized relational model. They could 
probably create foreign keys and things like this, and then they’re done. You know, I mean, 
maybe, maybe if you’re, if you’re get a really [00:24:00] smart developer, they’ll understand 
what they need to index, right?

But you know what I mean? It’s like, but developers themselves are not really good at 
optimizing data models, right?, it takes a data mind to do that. And to do that, you gotta 
need to understand how the system uses the data, accesses the data, stores the data, things 
like this, so again, those skills are just gotta have them.

We gotta have ‘em. Although you do touch on a point about the continued abstraction and 
sometimes you need to understand what’s going on inside the system. Yes. To best use the 
system, I have this fear that it all go dark and everything breaks. And it’s going to be a three 
and a half inch floppy disc that comes out of a drawer, restarts everything, cuz they work out 
that’s where the key was and they have to rebuild it all back up from there.

Perhaps to bring today’s conversation to a bit of a conclusion. Then I, I wonder what advice 
you could give to business owners and business decision makers in terms of making some 
smart decisions around how they leverage their data. So I know that. A lot of organizations 
are, are looking at the data and the way [00:25:00] that we talked about earlier.

It’s like trapped in little pools all across the organization and they’re trying to bring it 
forward to drive insight. What is the fastest route through that, do you think? Okay. Yeah, no, 
absolutely. This is, you know, the biggest thing and one of the biggest values of MongoDB, 
and it’s always been one of the mission statements of the company is making it.

Incredibly easy for developers to work with data. Okay? And that that is really what the Atlas 
Developer data platform is all about, right? We have integrated feature functionality in there 
that pr, that that means that developers don’t have to spend their time hooking up pipes and 
plumbing to other systems to be able to get the features and functions they need.

Right. So if I were to say anything to business owners today is to look at data platforms 
that have the integrated functionality that your developers are asking for, right? They want 
full tech search on top of their data. They want online archive, right? They want federated 
queries. These are all things they want.

Vector search, right? These are all things that if you wanna move fast, then the database 



© Capgemini 2023. All rights reserved 11

you’re using better provide those things because [00:26:00] otherwise your developer’s 
going to spend half their time hooking up pipes and plumbing managing ETLs synchronizing 
data across multiple. Disparate silos just so that they can get the functionality they need.

This is the mission that that, and this is the, the mission of MongoDB and it’s what we 
heard many years ago. I, when I was at AWS, I advocated for exactly this type of integrated 
platform approach, right? The, the mission of the cloud in the beginning when it was 
infrastructure as service was don’t focus on undifferentiated heavy lifting.

Right. It’s not valuable to your business to understand. Right. Exactly. And what we want is 
we want. Teams to be able to use the tooling to be able to deliver the functionality, not have 
to build the tooling to deliver the functionality. Right? And this is where MongoDB really 
accelerates and separates from our competition.

We have focused on delivering that mission. It’s not purpose-built silos that need to be 
stitched together by developers. It’s a tightly coupled, fully integrated platform. That 
accelerates the development of, you know, a process. And that’s really, if I were to talk to 
stakeholders today, that’s the number one mission.

[00:27:00] Make sure that the platform that you choose delivers the feature and functionality 
that you need, because otherwise you’re going to be supporting multiple platforms and 
hooking all this stuff up yourself and spending a lot of money doing it.

We’ve been looking at this week, so each week I will do some research on what’s trending 
in tech, and this week I want to focus on how can businesses get started with real time 
data and why is this important? So in today’s digital services economy, many businesses are 
now service providers, and in this environment, businesses rely on real time applications to 
survive.

And according to research, 72% of consumers say that poor personalization decreases their 
trust in brands. [00:28:00] So how can businesses get started with real-time data? So first, 
you need to consider the poor data experiences that your existing infrastructure may be 
delivering. So, for instance, look into the current processes and what they mean to you and 
to your customers.

And next, you need to assess the data intensity of your existing applications. So consider 
the rate at which your data intensive applications are likely to increase in the year ahead and 
beyond, so then you will have a good idea of where you stand, where you’re headed, and 
what infrastructure your applications require in the future.

And this infrastructure, this data infrastructure, will enable you to use real-time data and 
analytics to provide your customers with the experiences they expect. So a question to you, 
Rick, do you also see an increase in demand for realtime data ANA analytics, and do you have 
some advice for companies that want to get started with realtime data?

, no, I mean, absolutely. It’s a, it is probably [00:29:00] one of the number one concerns that 
we see is real-time data processing stream, data processing, lots of workloads that, use 
MongoDB and leverage MongoDB, you know, for those types of, of data processing services, 
I guess. You know, a lot of, a lot of that really comes down to event driven processing.

, one of the things about Atlas MongoDB native, even enterprise version supports, you know, 
the chain streams, atlas supports, triggers, these are technologies that are used absolutely 
to be able to support or, or facilitate realtime data processing, event driven data processing. 
Um, I guess advice to customers that are involved in, in those types of workloads.

Again, it, it comes down to, you know, platform selection, right? Um, and, and honestly with 



© Capgemini 2023. All rights reserved 12

real time event driven processing, the most important thing is about guaranteed processing, 
right? And, and so this is where I see organizations. Failing more often is when they try to 
build these types of systems themselves, [00:30:00] themselves that provide guaranteed at 
least once processing of those event streams.

You know, if you’re, if you’re rolling your own infrastructure to do this, you are going to be 
responsible for maintaining, you know, and guaranteeing the execution of those events. You 
know, if you go with the service provider that can provide that function triggers off of the 
chain stream, for example, with Atlas, or, you know, DynamoDB has streams in Lambda, most 
managed database.

Offerings do provide this type of functionality, facilitate that type of processing. So, They’re 
going to provide those guarantees, right? That’s not something that you’re going to have to 
do. So if you are involved in real time event driven processing, then I would definitely look 
at managed service providers that can provide a level of guarantee around that data, about 
around those data events and the triggering of processing around those events.

Um, or you’re going to be the one that’s going to have to build that and guarantee it for 
yourself. So a lot more work, right? Good advice. Yeah, don’t try to reinvent the wheel, but 
use what’s already in store. Yeah. Yeah. I do like that point you make about, we don’t trust 
[00:31:00] organizations that don’t personalize around us as well.

I had a recent experience where, something went on on the.com website and the.co.uk knew 
nothing about me. Robbie, is this, is this some of your specialist websites? Unfortunately, 
no. David, this is, this is, um, one way you might, I would, I would advise you. Don’t put your 
personal data into there, Rob.

No, no. Yeah. Don’t, don’t put you, this, this experience across them was, um, the same 
company, different domain. Simple. Hadn’t shared the data between the two. I logged in, 
didn’t have a clue about me. And the item I perched a virtual ticket wasn’t there. At which 
point I went, where’s it gone? Log in. Yeah. On the other machine.

And I didn’t spot the domain change. And then when I spot the domain change, of course 
I worked it all out, but until then I was like quite confused cuz it was through the app that 
I downloaded that I couldn’t find my ticket. And I’m like, How’s this go? Where? Where’s it 
gone? Rather frustrated. Yeah. Yeah.

And it was that experience of they hadn’t connected, their data sets up between the domains 
to no single [00:32:00] view of the customer. Right. So you had, you had like a web app that 
had one set of data and a, and a and a mobile app that wasn’t seeing the update. Exactly. And 
probably cuz it was like a pipeline in the back that synced those two things.

And guess what? Something broke or something. The queue backed up. Something was 
delayed. And, and this is again what we talk about. If you’re building a system, then you want. 
A, a unified view of, of the data, right? You don’t want data in different silos because you get 
into, you get into this kind of disjointed customer experience.

, you have one system that’s aware of change and another that’s not, that’s not a good thing. 
Right? And so, yeah. Yeah. And my natural trust of that organization drop that day. Cause of 
course, hang on a minute, they’ve lost my ticket. Exactly, exactly. I’m going to have to fill in a 
form. I’m going to be on a contact center experience.

I have no clue how to get this back. Yeah. Yeah. Exactly. Yeah. Yeah. But no, it’s, it’s, it’s a very 
good point about the, um, better data architecture gives a much better experience, doesn’t 
it? That’s right. And a single source. Right. I, this is one of the things, again, I, I, I love AWS. I 



© Capgemini 2023. All rights reserved 13

spent a decade there. It was a fantastic experience.

Would never [00:33:00] take it back. I, I was never a fan of purpose-built for the exact 
reasons we talked about, you know, I don’t want, as a developer, I don’t want to have to glue 
up a bunch of, you know, disparate services over and over again to deliver solutions, right? I 
want my data platform to deliver that feature and functionality that I need, and, and I wanna 
spend time on ETLs and, you know, data consistency, data coherency, you know, types of 
issues and code for that.

Right. I mean, really, do you wanna have to write code that accounts for the fact that the 
data in this silo might be different than the data in that silo? No. You, you don’t want to have 
to do that as a developer, right? Yeah. So it’s just better. It’s better, it’s better for everybody 
if we have a single view of the data and an API that sits on top of that single view of the data 
that provides the functionality we need.

That’s what we do with Atlas. Thank you so much for your time and insights today, Rick. I 
know I, I’ve learned a, an awful lot about the underlying elements of how important good 
plumbing is in this situation and the uplift you’re going to get from the business [00:34:00] 
value in your data. And not to mention like, be kinder to the, the planet.

So thanks again. Great insights. Thank you very much. Glad to be here. Now look, we end 
every episode of this podcast by asking our guests what they’re excited about doing next. 
And that could be, I’m off on holiday at the weekend and, you know, can’t go fast enough. 
Um, or it could be something you’re excited about in your, in your professional life.

So Rick, what are you excited about doing next? You know, um, actually coming to MongoDB, 
I was, I had a lot of questions about how effective the program that we built at Amazon 
retail was going to be, bringing it out to a broad set of customers like this across different, 
organizations. I had mixed results at AWS, and as it turned out, Um, you know, it was the, the, 
the, what was lacking was the, what I call the wood behind the arrow, so to speak.

We had 230 services at AWS and those sales teams, they didn’t really care about anything but 
what the customer wanted, right? They’d hit their numbers selling on e C two. They didn’t 
care about DynamoDB. Here at MongoDB we’re all lined up behind one product, right? So 
what I’m really excited [00:35:00] about is extending what we’ve done over the last year and 
delivering.

For our customers over the next year or so and, and watching the program that I brought 
from AWS really flourish cuz it really is as we go through this exercise of working with 
customers and bringing this, what we call MongoDB Day experience, and, and running our 
design reviews. It’s just so exciting to talk to so many customers about so many different 
workloads.

It really gets me up and gets me going every day. So that’s what I’m, that’s what I’m looking 
forward to. Awesome. Well, we wish you very good luck with that, Rick. Thank you. 

Thank you so much for being on the show to our sound and editing wizard, Ben, and of 
course to all of our listeners, We’re on LinkedIn and Twitter, Dave Chapman, Rob Kernahan, 
and Sjoukje Zaal. Feel free to follow or connect with us and let us know if you have any ideas 
for the show.

And of course, if you haven’t already done that, rate and subscribe to our podcast. See you in 
another reality next week



© Capgemini 2023. All rights reserved 14

This presentation contains information that may be privileged 
or confidential and is the property of the Capgemini Group.
Copyright © 2023 Capgemini. All rights reserved.

About Capgemini

Capgemini is a global leader in partnering with companies to transform 
and manage their business by harnessing the power of technology. 
The Group is guided everyday by its purpose of unleashing human 
energy through technology for an inclusive and sustainable future. It is 
a responsible and diverse organization of over 360,000 team members 
in more than 50 countries. With its strong 55-year heritage and deep 
industry expertise, Capgemini is trusted by its clients to address the 
entire breadth of their business needs, from strategy and design to 
operations, fueled by the fast evolving and innovative world of cloud, 
data, AI, connectivity, software, digital engineering and platforms. The 
Group reported in 2022 global revenues of €22 billion.

Get The Future You Want | www.capgemini.com


